Multiplicative decomposition of arithmetic progressions in prime fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic progressions in multiplicative groups of finite fields

Let G be a multiplicative subgroup of the prime field Fp of size |G| > p1−κ and r an arbitrarily fixed positive integer. Assuming κ = κ(r) > 0 and p large enough, it is shown that any proportional subset A ⊂ G contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi-Green-Tao theorem. Introduction. We denote by Fp the prime field with p elements and Fp its ...

متن کامل

Prime Numbers in Certain Arithmetic Progressions

We discuss to what extent Euclid’s elementary proof of the infinitude of primes can be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem). Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic number fields.

متن کامل

On Restricted Arithmetic Progressions over Finite Fields

Let A be a subset of Fp , the n-dimensional linear space over the prime field Fp of size at least δN (N = p), and let Sv = P −1(v) be the level set of a homogeneous polynomial map P : Fp → Fp of degree d, for v ∈ Fp . We show, that under appropriate conditions, the set A contains at least cN |S| arithmetic progressions of length l ≤ d with common difference in Sv, where c is a positive constant...

متن کامل

Gaps between Prime Numbers and Primes in Arithmetic Progressions

The equivalence of the two formulations is clear by the pigeon-hole principle. The first one is psychologically more spectacular: it emphasizes the fact that for the first time in history, one has proved an unconditional existence result for infinitely many primes p and q constrained by a binary condition q − p = h. Remarkably, this already extraordinary result was improved in spectacular fashi...

متن کامل

On the Least Prime in Certain Arithmetic Progressions

We nd innnitely many pairs of coprime integers, a and q, such that the least prime a (mod q) is unusually large. In so doing we also consider the question of approximating rationals by other rationals with smaller and coprime denominators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2014

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2014.06.011